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KINETICS OF
HOMOGENEOUS REACTIONS

Kinetics is concerned with the rates of chemical reactions and the factors
which influence these rates. The first kinétic measurements were made before
1820, but interpretation in terms of quantitative laws began with the studies
on the inversion of sucrose by Wilhelmy,! the esterification of ethanol with
acetic acid by Bethelot and St. Gilles,” and the reaction between oxalic acid
- and potassium permanganate by Harcourt and Esson.? These investigations
established the relations between rate and concentration of reactants. The
important contribution of Arrhenius® for the effect of temperature was also
made in the nineteenth century.

In this chapter the definitions and concepts used in kinetics are pre-
sented, followed by a brief description of theories for reaction velocity.

1L, Wilhelmy, Pogg. Ann., 81, 413, 499 (1850).

2M. Berthelot and L. P. St. Gilles, Ann. Phys., 63, 385 (1862). )

3A. V. Harcourt and W. Esson, Proc. Roy. Soc. (London), 14, 470 (1865); Phil. Trans.,
156, 193 (1866); Phil. Trans., 157, 117 (1867).

43 Arrhenius, Z. Physik Chem., 4, 226 (1889).
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. SECTION 2-1 RATE OF REACTION 33

" Then the use of rate equations for studying the kinetics of reactions is

illustrated for simple systems and some complex ones. Only homogeneous
reactions, devoid of any physical resistances, are considered here. The
kinetics of heterogeneous reactions is taken up in Chaps. 8 and 9.

2-1 Rate of Reaction . .

_ Therate of reactionis formally. defined. as-the changeinimoles-ofa- compenent T~

with respect to time, per unit volume of reaction mixture. Thls quantity is
negative if the component is a reactant and’ posifive if the component is a |
product It is important that there be but one definition of rate, reoardle'ss
of the'type of reactor—flow or batch, tank or tube. Thus the rate must be a
local, or point, value; that is, it must refer to a differential volume of reaction
mixture. With this restriction 'the rate becomes a unique property for a given
system. If the rate is to be the'same throughout the volume of a tank reactor,
the concentrations and temperature must be umform Otherwwe the rate
wﬂl vary f y from point 16 point in th .I‘C{lCQOn olume. In heterogeneous
reactions, particularly those with solid phases, it may be convenient to
base the rate on a unif fass oF SUrface rather than volume but it will always
refer to a point in the reaction region.

T For the bazch _tank reactor, with uniform concentrations and tem-
perature, the ) mdependent variable is time, and the mathematical expression
for the rate ris_ . —

1 dN {moles '

ST dt o volume x time: y 1/ @-1)

“where V'is the Volume of the reaction mixture and N is the number of moles

/ of a product species. If N réefers to moles of reactant, so that diN/dr is negative,
" a minus sign is commonly used in front of the derivative so that the rate is

always positive. For a tubular reactor with a steady flow of madterial in and
‘out, the independent variable w Or reactor volurne
and the composition and rate change with this variable instead of time.
To formulate the point rate a differential element of reactor volume, 47,

:must be chosen. If N is the molal rate of ﬁow of a component into the volume
: element, the rate will be

aN’
av

)

r =

| These two equations will be used throughout the book to describe the rate

. "of reaction quantitatively.

The course of a.reaction is normally measured by the change in con-
centration of a reactant or product Partlcularly in gaseous reactlons
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yolume changes may also occur (for example, because of a change in total
moles). Then concentration changes arise from a change in volume as well
as from reaction. The influence of volume change can be examined by writing
N = CV: Thus Eq. (2-1) becomes

. 1 d(CYV) 2-3)

VvV odt

If the volume, or density, of the reaction mixture is constant, Eq. (2-3)

reduces to the common form v
. . \‘.‘ A

- dc o
T @ SRR

(2-4)

Care must be exercised in deciding when Eq. (2-4) is applicable. In a flow
reactor, used for a gaseous reaction with a change in moles, it is not correct
(see Examples 4-3 and 4-4). However, it is correct for all gas-phase reactions
in a tank-type reactor, since the gaseous reaction mixture fills the entire
vessel, so that the volume is constant. For many liquid-phase systems
density changes during the reaction are small, and Eq. (2-4) is valid for all
types of reactors. The use of Egs. (2-1) to (2-4) will become clear as we
consider various kinds of reactions and reactors.

1If the stoichiometric coefficients for two reactants are different, the
rate expressed in terms of one reactant will not be the same as the rate
expressed in terms of the other. Suppose the reaction

ad + bB — ¢C + dD

occurs at constant volume,lfso that Eq. (2-4) is applicable. The concentration
changes for the four reactants and products are related as follows:

lda)_ 1 dE_1dq_ 1A oy

a dt b dt c dt d dt

where [4] is the concentration of reactant A, etc. For example, if the
reaction is

24 + B— C

1 d[4] _ d[B] _ d[C]
2 & ar  dt

or

d[4] d(B] . d[C]
dt =2 G =24
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For reactions with nonequal stoichiometric coefficients, Eq. (2-4') shows
that a rate which is the same for all components can be defined as’

dC;

-t . - 2_4//
R (@47
where the stoichiometric coefficient a; is negative for reactant i and positive
for product 7, and C; is the concentration. .

\

r =
’ i

(2—2 Concepts of Kinetics

The early workers in kinetics found that simple relations existed between
rates of reaction and concentrations of reactants. Thus Berthelot and St.
Gilles® discovered that the rate of esterification was proportional to the
first power of the concentration of ethanol and to the first power of the
concentration of acetic acid. The rate is said to be first order with respect to
each reactant. In general terms, suppose that the rate of the reaction

aA + bB — cC + dD

may be written =
r = k[AT[BY | i @5)
Then o is the*order of the reaction with respect to 4, and f is the order with
respect to B. In subsequent sections kinetics will be discussed with respect
to a batch tank reactor, usually at constant density, so that Eq. (2-4) is
applicable. Measured in terms of reactant 4, this limitation means that
Eq. (2-5)-may be written
d[4 '
dhan - Eﬁ] = k[A] [B]f’ (2-6)

The order of the reaction is determined by comparison of experimental
data with Eq. (2-6) or integrated forms of it, as described in Secs. 2-7 to 2-10.
As such; order is an empirical quantity, and o arid § do not always have
integer values.

There is no necessary conn.ectlon between order and the stmchmmet_nc
coeﬂic1ents in the réaction equatlon that is, it is not required that « = a
and B =bin reactlon,(z -5). For example, the stoichiometry of the ammonia-
synthesis reaction is K

2N, + 3H, - 2NH,

"This concept of a unique rate has been used to develop a measure of the amount of reaction
which is the same regardless of the component used to follow the course of the reaction.
This so-called extent of reaction is described in Michel Boudart, “Kinetics of Chemical
Processes,” p. 10, Prentice-Hall, Inc. , Englewood Cliffs, N.J., 1968.

M. Berthelot and L. P. St. Gilles, Ann. Phys., 63, 385 (1862).
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but for many catalysts the rate equation that best fits experimental data is
first order in N, and zero order in hydrogen.

As kinetic studies of many kinds of reactions have accumulated, it
has become increasingly clear that formation of the final products from the
original reactants usually occurs in a series of relatively simple steps.The-
number o,f_gaveral_l, reactions that take place in a single step is small. Herein
Ties the explanation for the difference between order and stoichiometric
mates _of “the individual -steps-will -normally--be- different;-
and ‘the’ ate of the overall reactior’ will-be determined primatily by ‘the

“slowest of these steps. The, mechamsm of a reaction is the sequence ¢ of steps .

that describe how the final products are formed from the ongmal reactants. .

If the rnechamsm is known, it is usually p0551ble to-evaluate a rate equation

such as (2-6) and, hence, the order of thereaction. In contrast, it i generdlly
not possible to infer a mechanism from the rate equation alone.
These points are well illustrated by the gaseous photochlorination

of propane,
C3Hg + CIZ g C3H7C1 + HCl

At certain concentrations stoichiometry and order do not agree, for the
rate is found! to be second-order in chlorine and independent of propane
concentration (zero order) according to the rate equation

d[Cl,]
T ar

= k[CL,]? NeX)

- However, the actual mechanism of the reacuon probably entails many
steps comprising an initiation reaction in which light is absorbed, propaga-
tion steps involving the free radicals C;H, and Cl, and termination steps
in which the radicals are eliminated.

A fortuitous example in which order and stoichiometry are identical
is the decomposition of N, Oy, )

Nzos g 2N02 + 202

Ogg? has found that while the rate is first order in N205, the mechanism
probably consists of three steps:

1. N,0;=NO, + NO;

2. NO, + NO; —» NO + 0, + NO,
3. NO + NO; — 2NO,

If the second step is second order and Ver3,/ slow with respect to the others,

'A_E. Cassano and J. M. Smith, AICKE J., 12, 1124 (1966).
2R_A. Ogg, Jr., J. Chem. Phys., 15,337, 613 (1947).



"GeCTION 2-2  CONCEPTS OF KINETICS 37

the rate of the overall process will be proportional to the product of
NO, and NOj; concentrations. Furthermore, equilibrium will be quickly
attained in the first step, so that [NO,][NO,] will be equal to X, [N, 0],
where K, is the equilibrium constant for the first step. These postulates
and the three-step mechanism thus explain the first-order rate equation.

Note that it would be incorrect to assume a single step for the overall reaction

on a basis of the observed first-order dependency on the rate.

‘The individual steps, which together describe the overall reaction,
are called elementary processes. Theories about kinetics (discussed in Secs.
2-4 to 2-6) refer to these elementary processes. Order and stoichiometric
numbers are usually identical for elementary processes, but not always.
The molecularity of an elementary step is the number of reactant molecules

" that take part in the reaction. This is usually equal to the total order, _but
exceptions exist for unimolecular reactions. For example, uhimolecular
-teactions (molecularity = 1) are not necessarily first order; in fact, gaseous
‘reactions which involve one molecule always become second order at low

pressures (see Sec. 2-6).
Up to this point we have considered the influence only of concentration

on the rate. The specific rate > constant, Kin Eq (2-6) includes the effects of all |

other vanables The most 1mporta t of these is temperature but others may h
be 51gn1ﬁcant For example, a reaction may be prlmarﬂy homogeneous butw

“have apprec1able wall or other surface effects. In such cases k g
with the nature and extent of the surface. A reacnon may be homogeneous
‘But also require a catalyst An example is the reaction for the inversion of
sugar, where the acid acts as a catalyst In these instances kX may depend
on the concentration and nature of the catalytic substance. However,

; ‘when the concentration effect of ‘the catalyst is known, it is better to includé

the catalyst concentrauon in Eq (2-5), so. that k 1s independent of all con-

cenfratlons
The dependency.of k-on temperature for an elementary process: follows
the Arrhemus _equation (see Sec. 2-3),

= Ae:"».f'f?‘.?i;- 2-8)

Where-A 1s the frequency (or preexponential) factor.and E is the activation
energy Combmmg Eqs (2-8) and (2-6) yields T

A e ;D @

e M-«».—,, SN ,——w——-—*""""“‘ o

This govxdes a descnphon of the rate in terms of the Lr_l_@a&lrable variables,
' Concentganon and temperature It is ngorously limited to an elementary
process because the Arrhenius equatlon is so restricted. However, the expo-

‘netial effect o' emperature often accurately represents experlmental
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rate-data-for-an -overall reaction, even though the activation energy is
not clearly defined and may be 2 combination of E values for several of
. the elementary steps. ’

e

2-3 The Arrhenius Law

Arrhenijus developed _his_concepts about the variation of rate with tem-

Eﬁf&éﬁt&igh thermodynamic arguments.* For a reaction whose rates are
rapid enough to achieve a dynamic equilibrium the van’t Hoff equation
states that T

dQnK) _ AH°

= : 2-10
_ 4T RT? i (10
If the reaction may be written
A+ B=C
the equilibrium constant?® is
C R
K L] (2-11)

' [B1[4] |
Since this is an elementary process, the rates of the forward and reverse

reactions may be formulated [by Eq. (2-6)] with order and stoichiometric
numbers identical:

Forward rate = k,[A4][B]
Reverse rate = k,[C]

At equilibrium the two rates are equal. This fact, plus Eq. (2-11), yields
k,[4][B] = K [C] 212

or?
[l Kk

—=—==K 2-13
 TIE R | 1)
Using this result in Eq. (2-10) gives

d(nk,) d(ln kY) AH

aT dT  R,T? (2-14)

1S, Arrhenius, Z. Physik Chem., 4, 226 (1889).

2To simplify the reasoning the complexities introduced by the differences between activities,
upon which X in Eq. (2-10) is based, and concentrations, which express X in Eq. (2-11), are
ignored.

3The form of Eq. (2-13) for an overall reaction is considered in Sec. 2-12.
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The right-hand side of Eq. (2-14) may be divided into two enthalpy
changes, AH; and AH,, such that
AH = AH, — AH, (2-15)

Then Eq. (2-14) may be split into two equations, one for the forward reaction
and another for the reverse reaction, which will have a difference in agree-

ment with (2-15):

dinky) _ AH,

dT R, T? (2-16)
g
dln k}) AH
~a TR @17
g

Integrating either equation and setting the integration constant equal to
In A gives a result of the form of the Arrhenius equation, Eq. (2-8):

k = Ae™ AHIRT (2-18)
An alternate derivation is based on the concept of an intermediate
state, often called a transition or activated state, which is a postulate of the
transition-state theory (Sec. 2-5). Suppose that product C of the reaction
A+ BsC

is formed only by decomposition of an activated form of reactants 4 and B,
which will be designated (4 B)*. Then the reaction occurs by two elementary
steps,

1. A+ B=(4B)*
" 2. (AB)F—C

If the first step is comparatively rapid in both forward and reverse directions,
(4B)* will be in equilibrium with 4 and B so that its concentration is

given by .
[(4B)*] = K*[4][B] (2-19)
where K* is the equilibrium constant for the formation of (4B)*. The rate

of reaction (rate of formation of C) is then given by the rate of the first-
order decomposition step. With Eq. (2-19), this may be expressed as

r = k*[(4B)*] = k*K*[A][B] . (2-20)
If we integrate the van’t Hoff equilibrium equation for K*,
d(lnkK*)  AH* (2-21)

af  R,T?
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we obtain
K* = Je AFYRT (2-22)

where I is the constant of integration. Combining Egs. (2-20) and (2-22)
gives

r = k* Je 8 RT [ 4][B] (2-23)
Comparison with Eq. (2-6) shows that
k = Ae 8H*IRT : (2-24)

where A = k*I. Equation (2-24) is also of the form of the Arrhenius
equation.

Since AH* is the energy required to form the activated state (45)*
from 4 and B, e 2#"RsT is the Boltzmann expression for the fraction of
molecules having an energy AH* in excess of the average energy. This gives
some meaning to the activation energy E in the Arrhenius equation. The
diagram in Fig. 2-1 shows that this value is the energy barrier that must
be overcome to form (4B)*, and ultimately product C.

The value of Eq. (2-8) rests substantially on the accuracy with which it
represents experimental rate-temperature data (see Example 2-1). When
measured rates do not agree with the theory it is usually found that the
reaction is not an elementary step or that physical resistances are affecting
the measurements. In other words, Eq. (2-8) correlates remarkably well
the rate measurements for single reactions free of diffusion and thermal
resistances. The Arrhenius equation provides no basis for discerning the
value of E. However, Fig. 2-1 indicates that the activation energy must be
greater than the heat of the overall reaction, AH, for an endothermic case.

In view of the success of the Arrhenius equation, there have been
many attempts to develop theoretical interpretations for the frequency

Fig. 2-1 Energy levels of initial, activated, and final states

‘Energy level in activated state AB*

/— -~
N
/ \
/ \
\
/ \
/ \
Il \\
! AH* =E \\ Ave. energy
I/ (Activation energy) ~~__ of products
//
Ave. energy e AH = Heat of reaction
of reactants - # (overall)
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factor A and the activation energy E. The collision theory (see Sec. 2-4),
in-which the frequency factor is treated as a collision rate, was inspired
by the kinetic theory of gases. Subsequently the more sophisticated activated-
complex theory was developed to take advantage of the more detajled
description of collisions made possible with statistical thermodynamics
and quantum chemistry.

( +) Example 2-1 Wynkoop and Wilhelm® studied the rate of hydrogenation of ethylene,
using a copper-magnesium oxide catalyst, over restricted pressure and composition
ranges. Their data may be interpreted with a first-order rate expression of the form

r= (kl)psz (A)

where r is the rate of reaction, in g moles/(cm?)(sec), and DPu, 1s the partial pressure of
hydrogen, in atmospheres. With this rate equation (ky), will be reported in g moles/
(cm®)(sec)(atm). The results for (k), at various temperatures are given in Table 2-1.
(a) What is the activation energy from rate equation (A)? (b) What would it be if the
rate equation were expressed in terms of the concentration of hydrogen rather than
the partial pressure?

Solution  (a) In the last column of Table 2-1 the reciprocal of the absolute temperature
is shown for each run. Figure 2-2 is a plot of (ky), vs 1/T on semilogarithmic coordinates.
It is apparent that the data describe a straight line, except for runs 8, 20, 21, and 22.
It has been suggested that water vapor may have caused the low rates in these cases.!
The line shown in the figure was located by fitting the data points by the least-mean-
squares technique. This requires writing Eq. (2-8) in logarithmic form,
E 1

In(k;), =InA ~ —R—: T (B)
This is a linear relation between In {k), and 1/T with a slope of —E /R, If(T;,k;) repre-
sents one of » data points, the values of A and E,/R, which describe the least-mean-
square fit are

p " akn-(3 YB3 1,

RS AT ©
o Y amr - (3 1/T.>
i=1 \i=i
A = ZB&EY WL — S UL Y (1/Tink) O)

ny (T — (Y. 1T)?
Carrying out the summations indicated for all the data points, with the data in Table
2-1 for k; and T}, we find '

£y 6,460
7S

9

E, = 6,460R,= 12,800 cal/g mole

'Raymond Wynkoop and R. H. Wilthelm, Chem. Eng. Prog., 46, 300 (1950).
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Table 2-1 Data for hydrogenation of ethylene

(ky), x 10, T, 1/T x 103,
Run g moles/(sec)(atm)(cm?) °C oKt

1 2.70 77 2.36

2 2.87 77 2.86

3 1.48 63.5 2.97

4 0.71 53.3 3.06

5 0.66 53.3 3.06

6 2.44 77.6 2.35

7 2.40 77.6 2.85

8 1.26 77.6 2.85

9 0.72 52.9 3.07
10 0.70 52.9 3.07
11 2.40 71.6 2.85
12 1.42 62.7 298
13 0.69 53.7 3.06
14 0.68 53.7 3.06
15 3.03 79.5 2.33
16 3.06 79.5 2.83
17 1.31 64.0 2.97
18 1.37 64.0 2.97
19 0.70 54.5 3.05
20 0.146 39.2 3.20
21 0.159 38.3 3.21
22 0.260 49 4 3.10
23 0.322 40.2 3.19
24 0.323 40.2 3.19
25 0.283 40.2 3.19
26 0.284 40.2 3.19
27 0.277 39.7 3.20
28 0.318 40.2 3.19
29 0.323 40.2 3.19
30 0.326 40.2 3.19
31 0.312 399 3.19
32 0.314 39.9 3.19
33 0.307 39.8 3.19

sOURCE: Raymond Wynkoop and R. H. Wilhelm, Chem. Eng. Progr., 46, 300
(1950).

A quicker but less accurate method is to draw, visually, a straight line through
the data plotted as In (ky), vs 1/T, measure its slope, and multiply by R, to obtain the
activation energy.

(b) For gaseous reactions the rate equation can be expressed in terms of con-
centrations or pressures. Equation (A) is the pressure form for this example. In terms of
concentrations, the rate is

r= (ke [Hz]
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AN

7

30
\\8§\ CH, + H, = C,H,
20 N Data of Wynkoop and Wilhelm,
—_ 1 I o Chem. Eng. Prog. 46, 300(1950)
g
8|5 ° \f\
E18 10 \
it
=7

(ky), x 10°

| N

| ™

i « N

(B)

X Water vapor in reactants N
X l J |
2.7 2.8 2.9 30 3.1 32 33 34
1000
oK -1
<
Fig. 2-2  Plot of Arrhenius equation for hydrogenation of ethylene
Expressing (k, ) in the Arrhenius form and then differentiating gives
(k) = Ac e EelReT
and —
dlln (k)] _ Ec
4(1/T) R,
This may be related to Eq. (A) by noting that for an ideal-gas mixture the concentration
of H, is
Pu,
[H.] = R,T
-Then
k
AR

®)
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Comparison of Egs. (A) and (F) gives the relationship between the two rate constants;
(k)e = (k) R,T (&)

Differentiating the logarithmic form of Eq. (G) and using Eqs. (B) and (E), we obtain
dlin (k;)c] _ dlin (£1),)  d(n 7) '

aQ4/7) D T AUD

B _ _E g
R, R,
or
E.=E, + R,T NG

Thus the activation energy, in principle, depends on whether the rate equation
is expressed in terms of concentrations or partial pressures. Also, the difference between
E. and E, depends on the temperature. In practice this difference is not significant.
In this example, at a temperature of 77°C,

E; - = 2(350°K) = 700 cal/g mole

P
This difference of 6% is too small to be discerned from rate measurements of the usual
precision. Hence it generally makes little difference whether E is evaluated from a rate
equation expressed in terms of pressures or in terms of concentrations.

RATE THEORIES

2-4 Collision Theory

The Arrhenius concept as pictured in Fig. 2-1 requires that the molecules of
reactants have an energy E above their normal, or average, energy. There
is a possibility that some molecules will possess this excess because of the
wide range over which the energy is distributed and the large number of
molecules that make up the system. According to classical kinetic theory,
some gaseous molecules will possess much larger amounts of translational
energy than others because of variations in their molecular velocities.
It is logical to suppose that collisions between these reactant molecules
would provide the activation energy necessary for the reaction to occur.
By assuming that the molecules behave as hard spheres, it is possible to
develop simple expressions for the rate. This approach, originally advanced
by Lewis' and Polanyi,” has become known as the collision theory.

The theory has a number of weaknesses and has been extended and
supplemented by later developments. However, it offers a simple picture

IW. C. McC. Lewis, J. Chem. Soc. (London), 113, 471 (1918).
2M. Polanyi, Z. Elektrochem., 26, 48 (1920).
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of the mechanism of reactions. According to the collision theory, the number
of molecules of product formed per unit time per unit volume—i.e., the
rate—is equal to the number of collisions multiplied by a factor 1. This
factor takes into account the fact that only a fraction of the collisions involve
molecules that possess the excess energy (activation energy) necessary for
reaction. For a gaseous reaction, such as 4 + B — C + D, this may be
stated mathematically as -

r=zf (2-25)

where z is the number of collisions between molecules 4 and B in 1 cm?
of reaction mixture per second. From kinetic theory (with the assumption
that molecules are hard spheres), the number of collisions is given by

My + Mg\”
zZ = [A][B]Gzde (SWRETW)

where the concentration is in molecules (noz moles) per cubic centimeter,
and

(2-26)

. 045 = effective diameter of 4 plus B upon collision
M = molecular weight
R, = gas constant = kyzN,, the product of Boltzmann’s constant and
Avogadro’s number, ergs/(°K)(g mole)

Then the rate equation (2-25) may be written

M, + Mp\*
r = f[4][B]ois (8ﬂRgTW)

The rate may also be expressed in terms of the specific rate constant,

2-27)

r = k[A][B] _ (2-28)
Using the Arrhenius equation (2-8) for k, we may write this as
r = Ae ERT [4][B] (2-29)

Combining Eqgs. (2-27) and (2-29) gives the following result for the frequency
factor A :
- s
Ae~E/RsT _ fo2s <8nRgT M,y + MB)

MMy

The fraction of the molecules that possess the required excess energy
for reaction should not depend on the number of collisions but on the
magnitude of the energy itself. If a Maxwellian distribution is assumed,
the fraction of the total molecules having an energy at least equal to E
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can be shown to be e~ ¥RsT_ Hence f may be taken as e #%s7, and then the
frequency factor is given by

M, + MB>‘/2

2-30
MM, (2-30)

A =02y <8nRgT

Finally, substitution of this value of frequency factor A in Eq. (2-8) gives
the collision-theory expression for the specific reaction rate,

Y
= oig (81:RgT T ) e~ ERT  cm3/(molecule)(sec)
A-"B

(2-31)

The first part of the equation represents the number of collisions per unit-
time per unit volume (when [4] = [B] = 1), and e”®/*" represents the
fraction of the collisions that involve molecules with the necessary activation
energy. )

Example 2-2 Use the collision theory to estimate the specific reaction rate for the
decomposition of hydrogen iodide, 2HI — I, + H,. Assume that the collision diameter
¢ is 3.54 (3.5 x 1078 cm), and employ the activation energy of 44,000 cal/g mole
determined experimentally by Bodenstein.! Also evaluate the frequency factor.

Solution According to the collision theory, the specific reaction rate is given by Eq.
(2-31) in units of cm?/(molecule) (sec). For the reaction 2HI — H, + 1,

M, = Mz = My =128
The other numerical quantities required are
R, = kgn = (1.38 x 10719)(6.02 x 10%?)
= 8.30 x 107 ergs/(°K)(g mole) or 1.98 cal/(g mole) (°K)
oap = 3.5 x 1078 cm
E = 44,000 cal/g mole
T =273 + 3214 = 594.6°K
Substituting these values in Eq. (2-31) yields

2 %
k= (3.5 x 1078)? [&(8.30 x 107) 594.6 (T%)] g~ 44 000/RsT

= 1.70 x 107%%¢737%  cm3/(molecule)(sec)

To convert this result to the usual units of liters/(g mole)(sec) it should be multi-

M. Bodenstein, Z. Physik Chem., 100, 68 (1922).
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plied by Avogadro’s number, 6.02 x 10** molecules/mole, and divided by 1,000
cm?/liter :
6.02 x 10?3
~ 71,000

= 1.02 x 10" e737* = 5.7 x 107 liter/(g mole)(sec) (A)

170 x 10710 ¢=374

As we shall see in Example 2-6, the rate constant from Kistiakowsky’s data is found

to be 2.0 x 1075 liter/(g mole)(sec). For reactions involving more complex molecules
the experimental rates are usually much less than the theory predicts.
Comparison of the form of Eq. (A) and the Arrhenius expression shows that the

frequency factor is

A = 1.0 x 10™ liters/(g mole)(sec)

2-5 Activated-complex (T ransition-state) Theory

The collision theory has been found to give results in good agreement
with experimental data for a number of bimolecular gas reactions. The
decomposition of hydrogen iodide considered in Example 2-2 is an illus-
tration. The theory has also been ~satisfactory for several reactions in
solution involving simple ions. However, for many other reactions the
predicted rates are much too large. Predicted frequency factors lie in the
rather narrow range of 10° to 10!!, while measured values may be several
orders of magnitude less. The deviation appears to increase with the com-
pléxity of the reactant molecules. (Moreover, unimolecular decompositions
are difficult to rationalize by the collision theory.) As a means of correcting
for this disagreement it has been customary to introduce a probability,
or steric, factor (having a value less than unity) in Eq. (2-31). To retain
the hard-sphere concept we must then explain why all the collisions supplying
the necessary energy do not result in reaction.*

Beginning in about 1930 the principles of quantum mechanics were
applied to this problem by Eyring, Polanyi, and their coworkers, and the
result is known as the activated-complex theory.* In this theory reaction is
still presumed to occur as a result of collisions between reacting molecules,
~ but what happens after collision is examined in more detail. This examination
is based on the concept that molecules possess vibrational and rotational,
as well as translational, energy levels.

k "For a more detailed and complete description of the collision theory and its limitations see
"E-A Moelwyn-Hughes, “Kinetics of Reactions in Solution,” Oxford University Press,
New York, 1946.

“Samuel Glasstone, K. J. Laidler, and Henry Eyring, “The Theory of Rate Processes,”
. McGraw-Hill Book Company, New York, 1941.
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The essential postulate is that an activated complex (or transition -
state) is formed from the reactant, and that this subsequently decomposes
to the products. The activated complex is assumed to be in thermodynamic
equilibrium with the reactants. Then the rate-controlling step is the decom-
position of the activated complex. The concept of an equilibrium activation
step followed by slow decomposition is equivalent to assuming a time lag
between activation and decomposition into the reaction products. It is
the answer proposed by the theory to the question of why all collisions are
not effective in producing a reaction. '

These ideas may be illustrated by a simple reaction between 4 and
B to form a product C. If the activated complex is designated by (4B)%,
the overall process can be written as

A+ B=(AB)*->C

Since equilibrium is assumed for the first step, the concentration of (4B)*
is that determined by the equilibrium constant. Then the rate of the overall
reaction is equal to the product of the frequency of decomposition of the
complex and its equilibrium concentration, or

r = v[(4B)*]  molecules/(sec)(cm?) (2-32)

where v is in units per second and the concentration [(4B)*] is in molecules
per cubic centimeter. If the equilibrium constant for the formation of
AB is K*, then in terms of activity a,
K* — Q4B _ VAB[(AB)*] (2;33)
a,lp (b ALADGsLB])
where y is the activity coefficient. The concentration of the activated complex
can be substituted in Eq. (2-32) to give

— v 1478 g+ 4][B] (2-34)
Y4B .

The equilibrium constant is related to the standard free-energy change for
the formation of the activated complex. From Eq. (1-4), this relationship is

K* = g~ AF*RGT (2-35)
It can be shown! that the decomposition frequency is
kgT
v = Z (2-36)

1Samuel Glasstone, K. J. Laidler, and Henry Eyring, “The Theory of Rate Processes,”
McGraw-Hill Book Company, New York, 1941.



‘SECTION 2-5 ACTIVATED-COMPLEX (TRANSITION-STATE) THEORY 49

where kg = Boltzmann’s constant, 1.380 x 10™ % erg/°K, and & = Planck’s
constant, 6.624 x 10727 ergs(sec).
Substituting Eqgs. (2-35) and (2-36) in Eq. (2-34) gives

= kT (Lf@) e~ AFIRT [ A][ B] (2-37)
h YaB

Hence the specific reaction rate is

i = kgT ()’AYB) o= BFYRGT _ kgT ()’A?B) ASH/Rg— AHY[R,T (2-38)
h Yas h Yan

The latter form follows from the thermodynamic relation AF = AH —

TAS.
Comparison of Eq. (2-38) with the Arrhenius equation shows that

A= }CBT (yAyB> EAS*/RQ (2_39)
h Yas
E = AH* (2-40)

These two relations are the predictions of the activated-complex theory for
the frequency factor and the energy of activation.

The collision theory [Eq. (2-31)] does not offer a method for calcu-
lating the activation energy. The activated-complex theory suggests that
E is the enthalpy change for formation of the activated complex from the
reactants [Eq. (2-40)]. To predict this enthalpy we must know exactly
what the activated complex is; i.e., we must know its structure. Even then
the prediction of enthalpy from molecular-structure data by statistical
mechanics is an uncertain operation for any but the simplest molecule.
Eckert and Boudart! have illustrated the calculation procedures with the
hydrogen iodide decomposition reaction. If an activation energy is available
from experimental measurements, the theory need be used only for estima-
ting the frequency factor from Eq. (2-39). Again the structure of the activated
complex is necessary, this time to calculate the entropy of activation, AS*.

Uncertainties about the structure of the activated complex and the
assumptions involved in computing its thermodynamic properties seriously
limit the practical value of the theory. However, it does provide qualitative
interpretation of how molecules react and a reassuring foundation for the
empirical rate expressions inferred from experimental data. The effect of
temperature on the frequency factor is extremely difficult to evaluate from
rate measurements. This is because the strong exponential function in the

- Arrhenius equation effectively masks the temperature dependency of A.

'C. A. Eckert and M. Boudart, Chem. Eng. Sci., 18, 144 (1963).
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Equation (2-39) suggests that A is proportional to T, the collision theory’
indicates a 7% dependency [Eq. (2-30)], and the Arrhenius -relationship
[Eq. (2-8)] implies that A is unaffected by temperature. It is normally
impossible to measure rates of reaction with sufficient sensitivity to evaluate
these differences.

In Eq. (2-32) it is supposed that the rate is proportional to the con-
centration of the activated complex. Similarly, in the collision theory, Eq.
(2-25), it is tacitly assumed that the concentration determines the collision
frequency and the rate. However, if the results of thermodynamics were
followed, the rate might be assumed proportional to activity. If the activity
replaced concentration in Eq. (2-32), the activity coefficient of the activated
complex would not be needed in Eq. (2-34). The final expression for the
rate constant would then be . -

o= 8Ly gy bt eIt (2-41)
instead of Eq. (2-38). Since the activity coefficient is a function of pressure,
k values predicted from the two equations would vary differently with
pressure. '

Eckert and Boudart analyzed rate data for the decomposition of HI
in this way. Their results were more compatible with Eq. (2-38), suggesting
that the rate is proportional to the concentration of the activated complex.
In this text the rate equation will be written in terms of concentrations.

2-6 Unimolecular Reactions

The activated-complex theory provides a plausible explanation of the first-
order rate of unimolecular gaseous reactions. In such a reaction the reacting
molecules gain the energy of activation by collision with other molecules.
This might be thought of as a second-order process, since the number of
collisions is proportional to the square of the concentration. However,
Lindemann® showed in 1922 that activation by collision could result in
first-order rates. If A* is an activated molecule of reactant, the equilibrium
between A and A* and reaction to products B can be represented as

A+ A 4% + 4 (2-42)

A*8 B : (2-43)
If the pressure (e.g., concentration) in the reaction mixture is high enough,

'E. A. Lindemann, Trans. Faraday Soc., 17, 598 (1922).

-~

-
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the number of collisions between 4 and 4* will be so large that equilibrium
exists between A and 4*, according to Eq. (2-42). If the equilibrium constant
is K, the concentration of 4* is given by

K, - L
(4] = K,[A] (44

The rate of formation of products is determined by the second reaction,
the decomposition of activated molecules. No collisions are needed for
reaction, so the rate is first order in A*, that is,

Substituting [4*] from Eq. (2-44), the rate is seen to be first order in A,
= b 4] 246

At Jow pressures the collision rate is low and equilibrium is not
attained between 4 and 4*, so that Eq.. (2-42) should be written

pr——-—

A+ A8 45+ 4 (2-47)

If the A* has a short lifetime, its concentration will be low with respect
to that of 4 or products. Then [4*] will rapidly reach a constant, low value
after which d[ 4*]/dt = 0. Summing the rates of formation and destruction
of A* by reactions (2-47) and (2-43) yields

d[A*] 5 .
£ =0 = G [A] — ky[47]
or
[4%] = %W (248)

Substituting this result into Eq. (2-45) gives a second-order rate
r =k [A]? ) (2-49)

This changeover from first-order to second-order kinetics at low pressures
has been observed experimentally for a number of unimolecular reactions.

fThis Statement is termed the stationary-state hypothesis—a concept widely used for reactions
mvolying species of a transitory nature, such as free radicals and atoms. See Sec. 2-11 for a
discussion of its use in photochemical kinetics. It is equally applicable here to the high-pressure
Case and also leads to Eq. (2-46), but by a more complicated route.
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ANALYSIS OF RATE EQUATIONS

e

/ The most common experimental procedure for establishing rate equations

is to measure the composition of the reaction mixture at various stages
during the course of reaction.! In a batch system this means analysis at
various times after the reaction begins.? Then the data are compared with
various types of rate equations to find the one giving the best agreement.
The comparison can be made in two ways:

1. The integration method, comparison of predicted '%md observed com-
positions. For this approachitis necessary to integrate the rate expression
[for example, Eq. (2-6)] to give concentration as a function of time.

2. The differential method, comparison of predicted and observed rates.
The latter are obtained by differentiating the experimental data/

In this chapter we are concerned only with the rate equation for the
chemical step (no physical resistances). Also, it will be supposed that
#the temperature is constant, both during the course of the reaction and
in all parts of the reactor volume. These ideal conditions are often met in
the stirred-tank reactor (see-Sec. 1-6). Data are invariably obtained with
this objective, because it is extremely hazardous to try to establish a
rate equation from nonisothermal data or data obtained in inadequately
mixed systems. Under these restrictions the integration and “differential
methods can be used with Eqs. (2-1). and (2-5) or, if the density is constant,
with Eq. (2-6). Even with these restrictions, evaluating a rate equation
from data may be an involved problem. Reactions may be simple-or complex,
or reversible or irreversible, or the density may change even at constant
temperaturgf(fof example, if there is a change in number of moles in a
gaseous reaction). These several types of reactions are analyzed in Secs.
2-7 to 2-11 under the categories of simple and complex systems.

2-7 Integrated Rate Equations for Irreversible Reactions

If all the reactants and products can be explained by a single reaction, the -
reaction system is simple. Within this category the reaction may be of any
order and may be reversible or irreversible. :

'Many other methods are used for studying kinetics, particularly for fast reactions. For a
description of various methods see F. J. W. Roughton and B. Chance, in S. L. Friess and A.
Weissberger (eds.), “Rates and Mechanisms of Reactions,” chap. 10, Interscience Publishers,
New York, 1953. )

21p continuous reactors the course of the reaction is measured at different flow rates, or reactor
yolumes. The analysis is different from that for batch reactors and involves Eq. (2-2). Analysis
of such systems is discussed in Chaps. 4 and 8.
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Zero Order  Zero order, meaning that the rate is independent of the con-
centration, may occur in two situations: when the rate is intrinsically
indépendent of concentration and when the species is in such abundant
supply that its concentration is nearly constant during reaction. In the
latter case the dependency of the rate on concentration cannot be detected,
and apparent zero order prevails. Thus in the oxidation of NO to NO,

in the presence of a large excess of O,, the rate is zero order in 0,. '

For a zero-order reaction at constant density Eq. (2-6) becomes

d/A4]
- =k 2-50
dr 0 (2-50)
Integrating from an initial condition of [4] = [4], yields
(4] = [4]o — kot (2-51)

This result shows that the distinguishing feature of a zero-order reaction
is that the concentration of reactant decreases linearly with time. It is
difficult to cite a homogeneous reaction that is intrinsically zero order,
although many reactions have apparent zero-order characteristics when the
concentration of the species is large. However, in some heterogeneous
reactions where the solid phase acts as a catalyst the rate is zero order.
An example is the decomposition of NH; on platinum and tungsten
surfaces.* :

Equation (2-51) can be used with measurements of concentration vs
time to determine if a reaction is zero order and to evaluate k. If two reac-
tants, 4 and B, are involved, experiments can be carried out with 4 in
large excess, so that the rate equation is independent of [A4]. Then the
concentration of B can be varied and its order determined. In this way the
concentration of one reactant can be rendered ineffective in order to study
the effect of another.

It may be simpler to measure the time when-a certain fraction of
reactant has disappeared than to_obtain concentration-vs-time data. Com-
mon practice is to obtain the tim!;e required for one-half of the reactant to

disappear. Defining this half-life as ty,, we have from Eq. (2-51)

Ao = [4]o ~ Koty
or

A, s

Half-life data cén be used with Eq. (2-52) to evaluate ko as an alternate to
Eq. (2-51).

'C. N. Hinshelwood and R. E. Burk, J. Chem. Soc., 127, 1051, 1114 (1925).

[)/2:-
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~

First Order Equation (2-6) for a first-order rate is

_AA < 2-53)
dt
If the initial condition is [4] = [4],, integration yields .
(4] ‘ .
Bt I 2-54
", T .

A plo%“’@f In [4]/[4], vs ¢ should be a straight line of slope equal to —k;.
The half-life is given by

—kity, =nY (2-55)
or

1 .
t, = —k—llnz o (256)

Equations (2-54) and (2-56) show that the half-life and fraction of reactant’
remaining are independent of initial concentration for a first-order reaction.
Among the numerous examples of homogeneous first-order reactions
are the rearrangement of cyclopropane to propylene,! certain cis-trans-
isomerizations, and the inversion of sucrose.

Second Order Two types of second-order reactions are of interest:

TYPEl A+ A—> P

P
i

A ; @57)
Typll A+ B P 1

_AA e | (2-59)
For type I reactions integration of Eq. (2-57) yields

LS k,t : (2-59)

(41 [4l
In terms of the half-life, this becomes ~

! (2-60)

[ ——
* ksl
Note that for a zero-order reaction 4y, is directly proportional to [A4]o; for

IT.S. Chambers and G. B. Kistiokowsky, J. 4m. Chem. Soc., 56, 399 (1934).
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a first-order reaction it is independent of [4],, and for a second-order
reaction inversely proportional to [4],. Two well-known examples of
type I reactions are the decomposition of HI in the gas phase and dimeriza-
tion of cyclopentadiene in either gas or liquid phase.

When order and stoichiometry of type II reactions do not agree, the
analysis is somewhat different. Suppose the stoichiometry may be represented

as ' @

ad + bB— P - ) P

and the rate expression is Eq. (2-58). Initially [4] = [4], and [B] = [B]y;
let [ X] be the amount of 4 that has reacted, expressed as a concentration.
Then at any time

[4] = [4], — [X] 2-61)
[5] = (], ~ > [x] | 2-62)
d[4] _ d[x]

(2-63)

dt dat
Substituting Egs. (2-61) to (2-63) in (2-58) gives

dt a

Integration from ¢ = 0 gives the concentration of X, or 4 and B, at any time:

JAA XY, - (XD ([B]o - %[X ]) (2-64)

[4]o — [X] — In [4] - b[A,o] — a[ By] a [4]o
"B, — Glatx] - "5 o et
‘ ' (2-65)

In terms of 4, t,, corresponds to [4]/[4], = %, and Eq. (2-65) can be
solved to yield

a a[B],
ty = In 2-66
4~ TalAT, — alBly) " 2a[ET, - b[Al, (269
If initial concentrations are stoichiometric, then
b
[2)o = [4],
and Eq. (2-64) becomes
d[A] b . b R
— = [ - - k. = 2.
o = (Al — (XD =y [ 4] (2-67)
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This is the same as Eq. (2-57), with k, multiplied by b/a. Numerous reactions
of type II have been observed: for example, HI formation from gaseous H,
and I,,! dimerization of cyclopentadiene in benzene solution, and certain
esterification reactions in aqueous solution.

Concentration-time data can easily be analyzed to test second-order
kinetics. For type I (or type II with stoichiometric proportions of 4 and B
initially), Eq. (2-59) indicates that the data should give a straight line if
1/[A] is plotted against . For type 11, Eq. (2-65) shows that a plot of log
[A]/[B] vs t should be linear. In this case the slope (b[4], — a[Blo)ka/a
will be positive or negative, depending on the stoichiometric coefficients
a and b and the initial concentrations.

In the following example first- and second-order rate equations are
used to interpret data for an isothermal, constant-density, liquid system.

Example 2-3 The liquid-phase reaction between trimethylamine and n-propyl bromide
was studied by Winkler and Hinshelwood? by immersing sealed glass tubes containing
the reactants in a constant-temperature bath. The results at 139.4°C are shown in
Table 2-2. Initial solutions of trimethylamine and n-propyl bromide in benzene,
0.2-molal, are mixed, sealed in glass tubes, and placed in the constant-temperature bath.
After various time intervals the tubes are removed and cooled to stop the reaction,
and the contents are analyzed. The analysis depends on the fact that the product, a
quaternary ammonium salt, is completely ionized. Hence the concentration of bromide
jons can be estimated by titration.

Table 2-2
Run t, min Conversion, 7%
1 13 11.2
2 34 25.7
3 59 36.7
4 120 55.2

From this information determine the first-order and second-order specific rates,
k, and k,, assuming that the reaction is irreversible over the conversion range covered
by the data. Use both the integration and the differential method, and compare the
results. Which rate equation best fits the experimental data? '

Solution The reaction may be written
N(CH.,); + CH,CH,CH,Br — (CH3)3(CH2CH2CH3)N+ + Br™
a i :
M. Bodenstein, Z. Physik Chem., 13, 56 (1894); Z. Physik Chem., 22, 1 (1897); Z. Physik

Cher., 29, 295 (1899).
2c. A. Winkler and C. N. Hinshelwdod, J. Chem. Soc., 1147 (1935).
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Since the concentrations of reactants and products are small and the temperature is
constant, the density may be assumed constant without serious error. Then the rate
equations (2-53) and (2-58) are applicable for the first- and second-order possibilities.
If T denotes trimethylamine and P n-propyl bromide, the rate expressions are

A7
L .
r=——==hk[T][P] (B)

INTEGRATION METHOD For the first-order case, the integrated form of Eq. (A) is
Eq. (2-54); that is, .

In [[TY:,]]" =kt (©)

In the second-order case it is noted that a = b and [77], = [P], = 0.1 molal.
Hence [T7] = [P], and Eq. (B) reduces to a type I second-order equation,
d[7] |

o = kTP ®)

The solution is Eq. (2-59), which may be solved for k, to give

The conversion x is the fraction of the reactant that has been consumed. In this
problem

1, -1
[T,
(7] =[Th(-% F)

The calculation of k, and k, will be illustrated for the first run. From Eq. (F),
[T] =[T]o (1 — 0.112) = 0.1(0.388)
Substituting in Eq. (C), we find

R T 0.1 e
k=1 =——In—— =154 x 104 !
YT T 13060) 00883 T e

Then, using Eq. (E) for the second-order possibility, we obtain

1 1 0.112
k2 = — ]} =
[T, (1 —x ) 60(13)0.0)(1 — 0.112)
= 1.63 x 1073 liters/(g mole)(sec)

Table 2-3 shows the results obtained in a similar way for the four runs. The k, values
show a definite trend with time, and therefore the first-order mechanism does not
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Table 2-3 Specific veaction rates for trimethylamine and n-propyl bromide reaction

ky x 10%, ky x 10%, [B],
Run 1, sec sec™ ! liters/(g mole)(sec) g mole/liter
1 780 1.54 1.63 0.0112
2 2,040 1.46 1.70 0.0257
3 3,540 1.30 1.64 0.0367
4 7,200 1.12 1.71 0.0552
(1.67 av)

satisfactorily explain the kinetic data. The k, values not only are more nearly identical,
but the variations show no definite trend.

methylamine reacted. Hence

[8] = [T, - [7]
and from Eq. (F)

[(B] = [1], — [T1o (1 — %) = x[T]o

Thus [B] can be calculated from the conversion data. A plot of [ B] vs time of reaction

is shown in Fig. 2-3. The slope of this curve at any point is equal to the rate of reaction,

since . _i[Zl:i]_E]_

dt dt
Slopes determined from the curve are given in Table 2-4.

Fig. 2-3 Concentration vs time for reaction between (C,H3)3N and
CH,CH, CH,Br
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Table 2-4

Concentration, g mole/liter

r = —d[T]/dt,
FB] [7] g mole/(liter)(sec)
0.0 0.10 1.58 x 107*
0.01 0.09 1.38 x 107°
0.02 0.08 1.14 x 1073
0.03 0.07 0.79 x 1073
0.04 0.06 0.64 x 1073
0.05 0.05 0.45 x 1077

If the reaction is first order, the rate is given by Eq- (A), which may be written

logr = log k, + log [T] (G)
Similarly, if the reaction is second order, from Eq. (D) we have
logr = logk, + log [T]? = logk, + 2log [T] (H)

For the first-order case log r plotted against log [T'] should yield a straight line with a
slope of 1.0. For the second-order case the result should be a straight line of slope of
2.0, in accordance with Eq. (H). A plot of the data in Table 2-4 is shown in Fig. 2-4.
While there is some scattering, the points do suggest a straight line of a siope approxi-
mately equal to 2.0. For comparison purposes lines with slopes of both 2.0 and 1.0
have been included on the plot. The equation of the solid line (slope 2.0) is

logr = ~2.76 4+ 2.0log [T]

Fig. 2-4  Rate vs concentration of trimethylamine
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By comparison with Eq. (H),
logk, = ~2.76
k, = 1.73 x 1072 liter/(g mole)(sec)

This value agrees well with the average result 1.67 x 10~ 2 obtained by the integration
method. .

Both methods show that the second-order mechanism is preferable. However,
the failure of the first-order assumption is perhaps more clearly shown by the differential
method than the integration approach. The data in Fig. 2-4 do not approach a slope
of 1.0 at all closely, but the k, values in Table 2-3 are of the same magnitude, differing
from an average value by not more than 17%. This is because the integration process
tends to mask small variations.

Third-order reactions are uncommon. Fractional orders exist when
the reaction represents a sequence of several elementary steps. Procedures
for establishing the order and rate constants for these cases are similar
to those given above. Experimental data that suggest fractional-order rate
equations should be examined carefully for effects of physical resistances.
Sometimes these effects, rather than a sequence of elementary processes,
can be responsible for the fractional order. An example is the study of the
hydrochlorination of lauryl alcohol with zinc chloride as a homogeneous
catalyst:!

CH,(CH,);, CH,OH()) + HCl(g) — CH3(CH;) 10 CH,CI()
+ H,0()

The reaction was carried out by dissolving gaseous HCl in a stirred vessel
containing the alcohol. The resulting concentration-time data could be
correlated with a rate equation half-order in alcohol concentration. How-
ever, the rate constant was found to vary with the gas (HCI) flow rate into
the reactor, suggesting that the observed rate was influenced by the resistance
to diffusion of dissolved HCI in the liquid phase. A method of analysis
which took into account the diffusion resistance indicated that the chemical
step was probably first order in dissolved HCl and zero order with respect to
lauryl alcohol.

2-8 Reversible Reactions

For an elementary process the ratio” of the forward- and reverse-rate
constants is equal to the equilibrium constant, Eq. (2-13). Hence the net
rate of reaction can be expressed in terms of one k and the equilibrium
Constant. Then the integrated form of this rate expression can be used with

" 'H. A. Kingsley and H. Bliss, Ind. Eng. Chem., 44, 2479 (1952).
2gee Sec. 2-12 for a discussion of this ratio for nonelementary reactions.
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concentration-time data to evaluate k, just as for irreversible reactions.
However, the evaluation procedure is more complex.

First Order 1If k; and k| are the forward- and reverse-rate constants for the
elementary process

A=RB

Hr}en -

A ot - ks 2-69)

The concentration of B can be expressed in terms of [A4] by a simple mass
balance. At constant density, and since the number of moles is constant,
the concentration of B is its initial concentration [ 8], plus the concentration
of A that has reacted; that is,

[B] = [Blo + ([4]o — [4]) (2-69)

Combining this result with Eq. (2-68) gives
d[A4 ‘

—% = (ks + K)[A] ~ k1([4]o + [B]o) (2-70)

At equilibrium the forward and reverse reaction rates are equal, and
Eq. (2-68) becomes

ki[A]eq = K1[B].,
or

[B].q ky
=K=_— - (2-71)
[A]eq k 1
where K is the equilibrium constant. Eliminating &} from Eq. (2-70) by using
Eq. (2-71) yields .

—id/:]-' = kl{K;; L] - %([A]o + [B]o)} 2-72)

Now, applying Eq. (2-69) at equilibrium conditions to find [B]., and”
substituting this result in Eq. (2-71), we have

K = L& — [B]() + [A:IO - [A]eq
(4] [4].,

or

[A]eq(K + I) = [B]O + [A:IO A . . (2"73)



